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On the a x 2  + px4 interaction 
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UK 
$ Department of Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland, UK 

Received 19 April 1982 

Abstract. By applying the Laplace transform method we obtain a class of exact solutions 
for the Schrodinger equation with the potential V ( x )  = ax2 +px4 ,  x > 0 ,  a 3 0 ,  p CO, the 
corresponding energy spectrum being continuous. A particular feature of these eigen- 
solutions is that they may not be accessible to perturbation theory. The properties of the 
solutions obtained are investigated and their relation to the case where x < 0 is included 
is discussed. 

1. Introduction 

In this paper we consider the problem of the anharmonic oscillator with quartic 
anharmonicity. Interest in such a model stems mainly from the fact that, as remarked 
by Simon (1970), the perturbation x 4  is singular. Now, singular perturbations are not 
uncommon in physics, for instance in the Born-Oppenheimer approximation in solid 
or molecular physics, where we have to take account of corrections which are singular 
perturbations in nature, or in quantum field theory, where one has a singular interaction 
Hamiltonian. Moreover, the above oscillator corresponds to a field theory (Bender 
and Wu 1969) in zero space dimensions for which the perturbation series diverges 
(Simon 1970). 

The foregoing examples indicate that it may be worthwhile to study the properties 
of singular perturbations, in our case of x4,  as such an investigation may reveal inherent 
physical phenomena. Since the work of Bender and Wu (1969) and the comprehensive 
contribution of Simon on the interaction 

V, (x )  = a x 2  +px4,  --co<x<co, 

where a > O  and p is allowed to assume complex values, a lot of work (Haan and 
Miitte 1979, Halliday and Surenyi 1980, Hioe et a1 1978, Mathews er a1 1981) has 
been done on the calculation of energy levels of the potential in equation (1.1) by 
application of perturbational and numerical methods. However, it may be desirable 
to obtain for the interaction (1.1) exact results since they can serve as a testing ground 
for the various approximate approaches. This may be all the more important, as it 
has been recently proved (Khare 1981) that rigorous solutions and eigenvalues for 
anharmonic oscillators (Flessas and Das 1980, Flessas and Watt 1981) may not be 
accessible to conventional perturbation theory. Now, the interaction (1.1) possesses 
the following striking characteristic. All the methods which yield exact solutions of 
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86 G P Flessas, R R Whitehead and A Rigas 

the Schrodinger equation for more general than (1.1) polynomial or even non- 
polynomial interactions (Flessas and Das 1980, Flessas 1981a, b, Flessas and Watt 
1981, Whitehead et a1 1982, Znojil 1982) fail when applied to (1.1). Motivated by 
this feature, which may be construed as a manifestation of the singular character of 
the x 4  perturbation, and by some recent work (Flessas 1982), we consider (ux2Cpx4 
on the half axis x > O .  As a result we have constructed rigorous eigensolutions for 
the case x > 0 provided p = IpI exp(i.rr) or p = IpI exp(3ri/2).  These solutions are 
valid for cy 2 0  and it will be seen that they most probably cannot be obtained by 
standard perturbation theory. 

In 0 2 we present our results in the form of a theorem and carry out the proof, 
while in 0 3 we discuss the solutions obtained and their relevance to the interaction 
(1.1). In appendices 1 and 2 we have included some mathematical details. 

2. Eigenfunctions and the energy spectrum 

In this section we shall prove the following theorem. 

Theorem 2.1. The Schrodinger equation 

y ” ( x ) + [ E -  V(x ) ]y (x )=O 

where 

I 

- - M < X  s x 1 ,  vo > 0, 

X Z S X  <CO,  Vb <o ,  
is satisfied by 

O < X l S X  S X 2 ,  

= A  exp[i(E - V O ) ” ~ X ] + B  exp[-i(E - Vo)1’2x], - m < x  S X l ,  

x 2 c x  <CO, i =A‘exp[i(E-  Vb)1 ’2x]+B’  exp[-i(E - Vb)‘”x], 
y ( x ) =  

where A ,  B and A’,  B’ are determined from the usual continuity conditions at x1  and 
x2, respectively, 

convergent for s E [0, CO), and 

The energy, E,  spectrum is continuous and comprises all finite numbers satisfying 
E 3 Vo. 
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Proof, We have 

(2.10) 2 y ” ( x ) + ( E - a x  +x4)y(x) = o ,  O < x 1 s x  s x z .  

y (x 1 = exp[(ax + bx 3)1g(x ), 

Previous results (Simon 1970, Flessas and Watt 1981) suggest that the ansatz 

(2.11) 

a, b being constants which have yet to be specified, is a suitable one. Inserting (2.11) 
into (2.10) and letting a, b be defined by 

9b2 = p, 6ab = a ,  (2.12) 

we obtain 

g“(x)+(2a + 6 b x 2 ) g ’ ( x ) + ( a 2 + E + 6 b x ) g ( x )  = 0, o < x 1 s x s x 2 .  (2.13) 

We write g(x) as the Laplace transform of a function f(s) .  Thus 
r m  

and assuming that the integral exists (this is justified later), we can build g’(x), g”(x). 
Then we deduce that (2.14) is a solution to (2.13) provided that the following two 
relations hold: 

(2.15) 

(2.16) 

We first turn our attention to the differential equation (2.16). From the indicia1 
equation of (2.16) it follows that we can write 

I (m)  - I (O)  = 0, 

6b~f”(s) + 6bf’(s) + [-s2 + 2as - (U’ +E)l f ( s )  = 0.  

I ( s )  = 6b exp(-sx)[sxf (s )  + sf’(s)], 

m 

f ( s ) =  c CflSfl, CO # 0. (2.17) 

According to the general theory of differential equations (Morse and Feshbach 1953), 
the power series in (2.17) converges for O s s  <CO, as the only singularities of (2.16) 
are at s = 0 and s = Co. We note in passing that from the convergence of the series 
in (2.17) for s E [0, CO) it readily follows that both I C , , ~  +n+m 0 and [ ~ C , , / C , , - ~ ~ ]  0. 
The c’s fulfil 

f l = O  

6b(n + 1)2~ , ,+~  - ( a 2  +E)c, ,  + 2 ~ ~ , , - 1  - ~ , , - 2  = 0, c - 1 =  c-2 = 0 ,  

n = 0 ,  1 , 2 , .  . . . (2.18) 
Using (2.18), it is straightforward to deduce a closed form for c,, with c1= 
c,(aZ+E)/(6b 1’): 

. . .  a 2 + E  6b12 0 0 0 
2a a 2 + E  6b22 0 0 0 
1 2a a 2 + E  6b32 0 0 
0 1 2a a 2 + E  6b42 0 

. . .  

. . .  

. . .  
0 0 1 2a a 2 + E  6b52 ’ . .  

‘ . a 2 + E  
2a 

n 2 2 ,  

6b(n  - 1)’ 
a 2 + E  

(2  !.19) 
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In what follows we investigate the behaviour of f(s)  for s >> 1. To this end we 
observe that (2.18) yields for every finite E 

n >>l, (2.20) 1/3 2 / 3  cn+l/cn=1/(6b) n , 
Henceforward we assume that p = - (PI < O .  Then by virtue of (2.12) 

L = (41p > 0 ,  n >> 1. (2.21) cn+1 2, -- - -- 
n2/31 

Cn 

In the p plane we have, in fact, p =ei"l/31. Hence (2.12) gives (6b)1/3= 
(4/p()1/6 e x p [ i ( ~ / 6 +  k 2 ~ / 6 ) ]  with k = 0, 1, . . . , 5 .  Equation (2.21) exhibits the k = 1 
case, the k = 4 case differing only in the (inessential for our purposes) sign of i. The 
remaining k-values give rise to relations similar to (2.21) and can be treated along 
the lines of theorem 2.1. 

Now, equation (2.21) implies that f ( s )  for s >> 1 behaves like 

(2.22) i 2 = c, +- 1 2 ,  z =z1, z1 = Ls, 
21 

the meaning of X1 and X2 being obvious. In the following we compare X l  with 

(2.23) 

By applying a result from the theory of analytic continuation (Morse and Feshbach 
1953), we can deduce 

In appendix 1 we shall prove that 

ISn I < n, 
On combining (2.24)-(2.26), we get 

n = l , 2 , 3  , . . . .  

(2.24) 

(2.25) 

(2.26) 

(2.27) 

the second inequality in (2.27) following from l / (n  - l)! < (n + l ) /n  !. Consequently 
(2.24) shows 

Eli =exp(-z)/CiI < 1 + z .  (2.28) 

Furthermore, since 

((2n)!/(2n +2)!)2/3 = ((2n - 1)!/(2n + 1 ) p 3 ,  n >>l ,  (2.29) 

Z2 in (2.22) has the same asymptotic behaviour for s >> 1 as XI. Hence, as (2.28) 
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shows, and recalling z = ( L s ) ~ ,  F ( s )  and thus also f(s1 can-rot behave for s >> 1 more 
strongly than 

(2.30) 

Therefore the integral in (2.14) exists and obviously (2.15) is automatically satisfied. 
Equation (2.9) is simply (2.18), where we have used (2.12) and the choice of /3 made 
in (2.21). On combining (2.11)-(2.12) and (2.14), we can establish the truth of (2.5). 
As (2.6)-(2.7) are trivial we need only note that for x +*a, y(x) must remain 
bounded. Thus we obtain E 2 Vo, and, therefore, since the basic relation (2.20) holds 
for any finite E ,  the last part of the theorem is verified. The continuous spectrum 
thus obtained, which may give rise to tunnelling effects not considered here, might 
have been expected in view of the structure of V ( x )  for x s x l  and x a x 2  as given by 
(2.3)-(2.4), and it does not preclude the existence of discrete E-levels. The important 
thing is that the exact solutions pertaining to that spectrum do not seem, as will be 
verified in 9 3, to be obtainable otherwise than as in the theorem. 

We wish to point out that theorem 2.1 is valid also for /3 = 1/31 exp(37ri/2). In such 
a case (2.22) is replaced by 

* (1 + L ' s ~ )  + (i/Ls )( * (1 + L ~ S  '1). 

(2.31) 

which, as some thought reveals, behaves for s >> 1 at the most as L6s6. Consequently, 
the above procedure applies here and we arrive at the equations equivalent to 
(2.5)-(2.9) with the appropriate coefficients for x and x 3  in (2.5) and a corresponding 
modification of the c's in (2.9). Moreover, the theorem clearly holds for any x2  > x1 > 0 
and arbitrary real VO, VL. The choice concerning x2, Vo and Vb in (2.2)-(2.4) 
facilitates the discussion in 9 3 .  

3. Discussion of the solutions 

Let us first examine (2.14). On using (2.17) and integrating, we easily deduce 

* n !  
g ( x ) =  C n i - l c n ,  O < X l < X  sx2<00.  

n = O  X 

Now the cn for n >> 1 behave like l / ( n  !)2'3, as (2.20) shows. Thus, if the series in 
(3.1) converged for some finite x, we should have 

( ( n  !/x"")c,) + 0, n +CO, O < X l S X  sx2<co, (3.2) 

which is impossible due to the behaviour of cn for n >> 1. Therefore, the series in 
(3.1) diverges for all x E (0, a) and hence term-by-term integration is no? permitted. 
This is not an unexpected result in view of the non-uniform convergence of the power 
series cnsn, and consequently of the series I; e-s*cnsn, in the s range [0, CO]. These 
series converge uniformly only in the s interval [0, RI, R <CO (cf any textbook on 
classical analysis). The impossibility of expressing g(x) as a series in l/x for x <CO 

proves that the solutions can no? be obtained by introducing 6 = l/x in (2.13). This 
feature, in conjunction with the appearance of p in the denominators in (2.5) and 
(2.9), strongly suggests that these solutions may not be accessible to conventional 
perturbation theory. 
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The structure of (3.1) implies that it might be considered as an asymptotic expansion 
of g ( x )  for x >> 1. If this is correct, then the truncation of the series in (3.1) for some 
finite n immediately shows that g ( x ) + O  as x +CO. In fact, as the solutions (2.5) are 
mathematically valid for arbitrarily large x 2 ,  we can consider the limit x + CO, i.e. 
x 2  + CO, and its implications. We are going to show in appendix 2 that 

Hence y l ( x )  remains physical for all x E (0, CO), as y l (x )+O for x + CO. That y l ( x ) +  0 
as x + CO despite the fact that it corresponds to a continuous spectrum is not surprising 
in the face of a similar asymptotic behaviour of the wavefunction relevant to the 
continuous hydrogen spectrum (Morse and Feshbach 1953, Sommerfeld 1967). In 
this respect we wish to refer to a very recent paper (Fernandez and Castro 1982) 
where the Hamiltonian 

has been studied, the boundary conditions at x l ,  x z  being arbitrary, with finite x l ,  x 2 .  
The proposed perturbative formalism is applied to the pure quartic oscillator 

V l b )  = P x 4 ,  (3.5) 

bounded by infinite walls, and it is valid provided p is positive and small. Consequently, 
the solutions (2.5), which hold also for CY =0 ,  are not obtainable by means of the 
method of Fernandez and Castro (1982), because that method, irrespective of the 
boundary conditions at xl ,  x 2 ,  requires finite x l ,  x 2  while (2.5) retains its validity for 
X2'CO.  

An interesting point to be raised here is that the presence of the exponent 5 in 
(2.20) and, hence, also in (2.21) is actually what engenders the validity of the basic 
(2.26), as will become apparent from appendix 1. Indeed, if we consider (2.10) for 
x E (--CO, CO), we again arrive at (2.13) where now x E (-CO, CO). On solving (2.13) with 
x E (-CO, CO), we obtain as usual the solution g ( x )  in the form 

Thus, the d,  fulfil a four-term recurrence formula from which we get an expression 
for d n + l / d n ,  n >> 1, similar to (2.20) but with the power 4 in place of 3. In such a 
case no definite statement can be made for the behaviour of (2.11) as x + CO, even if 
we consider the /3 < 0 case. Omitting, however, x = 0 by means of a cut-off distance 
x 1  > O  allows us to use (2.14) and formulate theorem 2.1. 

In the following we shall examine to what extent our results can be related to the 
usual anharmonic oscillator. Namely, in the case of the potential defined by ( l - l ) ,  
one of the main results of Simon (1970) concerns the proof of the asymptotic nature 
in p of the perturbation series for the energy E @ ) :  

The main physically plausible assumption needed for that proof is that (Simon 1970) 
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V(x) in (1.1) is bounded below. For p < O  this implies that one has to introduce a 
cut-off at some finite, albeit arbitrarily large, distances x \ < 0, x2  > 0 where x2  = ( x i  1 
can be taken without loss of generality (due to the symmetry of the potential). Further, 
one has to assume the discreteness of the spectrum of 

H (p  ) = p + ax  + px (3.8) 

at the bottom. These requirements are satisfied by bounding V(x) by infinite walls, 
thus also fulfilling, to any desired degree of accuracy, by choosing x2 to be appropriately 
large, the eigenvalue condition, built in all the procedures treating ( l . l ) ,  that the 
eigenfunction of H ( p )  tends to zero as 1x1 + 03. That is precisely the situation depicted 
by (2.2) and (2.4) on the half axis x > 0, where /Vb 1 can be made arbitrarily large 
without having to modify the E-spectrum obtained in theorem 2.1, since by virtue of 
(3.3), yl(x)+ 0 for x + 03. 

It should be noted that since p < 0 the classical force 2ax -4Iplx' is capable of 
sending a particle to 03 in only a finite amount of time (Simon 1970). Quantum 
mechanically, this is manifested in H ( p )  being nor self-adjoint unless we incorporate 
in the treatment the condition that the eigenfunction of H ( p )  approaches zero for 
] X I +  03. The solutions in (2.5), which are effectively valid for all x > O  with 
lim,,,yl(x)=O, give in fact on the half axis x > O  an exact analytic example for 
such a case. 

In the three-dimensional case we replace (1.1) by 

V(r) = a r2+pr4 ,  O s r < c o .  (3.9) 

As all the properties of equation (1.1) can be extended to three dimensions (Simon 
1970), which may correspond to more realistic models, the preceding discussion on 
the relation of our results to the standard anharmonic oscillator can be without any 
change applied to the s-waves case in three dimensions (Znojil 1981); we have only 
to replace x in all the relevant equations of § 2 with the variable r S O .  Now, since 
V(r) goes smoothly to zero as r + 0 the underlying physical situation should not change 
appreciably if we introduce a small cut-off distance rl and consider V(r)=O for 
0 s r s r l .  Hence, for p < 0 and s-waves the solution for the continuous spectrum of 
such a model is simply yl(r)/r, 0 < r l  s r S r2 < 00, y l ( r )  being given by (2.5). Con- 
sequently we may argue that yl(r)/r  could be a reasonable approximation to the exact 
solution for (3.9) in the case of the continuous spectrum pertaining to it, as yl(r)/r is 
essentially valid for any r > 0. 

Finally, as there is evidence (Bender and Wu 1969) that the analytic properties 
of the spectrum of (1.1) are probably present in more realistic field theories than the 
zero-space-dimensional field theory corresponding to (1. l ) ,  it may be worthwhile to 
try to investigate the potential in (2.2)-(2.4) for general complex p-values with the 
aim of gaining some idea of the apparent complexity of such theories. 
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Appendix 1. 

In this appendix, we use complex analysis to investigate the basic sum in (2.25). 
Consider the function 

(Al . l )  

Then S, can be written, by applying the method for the conversion of a sum into an 
integral (Morse and Feshbach 1953), 

r ( n  + l)f(z) cosec(m) dz. (A1.2) 

The contour integral in (A1.2) is taken counterclockwise around a closed rectangular 
contour encircling the points 0, 1 , 2 , 3 , .  . . , n. Thus it breaks up into four integrals, 
the first of which is (omitting 1/2i) 

with z = -i+iy.  On using the relation (Abramowitz and Stegun 1956) 

lr(5+2iy)l = ~ ‘ / ~ / ( c o s h 2 ~ y ) ’ / ~ ,  (Al .4)  

and since (Abramowitz and Stegun 1956) Ir(Z)I = Ir(Z)l, we obtain for Il in (A1.3) 
after a few elementary steps 

(A1.5) 

For finite L and n >>1 it can be easily seen by applying the asymptotic formula for 
the Gamma function that the right-hand side of equation (A1.5) can be made arbitrarily 
small for sufficiently large n. In view, however, of the considerations concerning the 
integrals along the other sides of the rectangular contour, we must have in (A1.5) 
L >>1. Thus we shall take the following formula (Morse and Feshbach 1953) valid 
for / Z / > > l w i t h Z = X + i Y :  

, 4 = tan-’(Y/X). (A1.6) Ir(x + 1 +iY) /  = ( 2 r ) 1 / 2 ( ~ 2 +  Y’)(’~+’) /~ e - (  Y4 +X) 

Now for n >> 1 we get by equation (A1.6) 

(A1.7) 

Further, we let L, for given n, be defined by 

L = n + $ .  (A1.8) 

Then, by (A1.7), # varies between 0 and ~ / 4 .  Hence equation (A1.5) becomes for 
n >> 1 by virtue of (A1.7) and (A1.8) 

(A1.9) 
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where, in writing down the first integral in (A1.9), we have taken account of the fact 
that 

21  ( A 1 . 9 ~ )  n/2+3/8 {[y/(n +$)I2+ 1) 
and that the maximum value of C#J is i7/4. Consequently 

(Ill < 4 ( 2 ~ ) - ~ / ~ M n - ~ / ~  (A1.lO) 

M being the finite value of the last integral in (A1.9), which clearly exists, as the 
integrand is finite for y 3 0 and goes to 0 for y -P a. 

For the second integral along the contour in (A1.2) we obtain with z = x -iL 

( n  >> I ,  L >> I ,  L = n + t), 

Since L >> 1 we can replace the Gamma functions in ( A l . l l )  by (A1.6), which is 
applicable as long as ( X 2  + Y2)'/' >> 1, a condition satisfied here. Bearing in mind that 
also n >> 1 and (A1.8), we deduce after some simple manipulations 

{exp{x/3-ln(n)[(x + 1)/3]+L(4 +44'/3-7r)}] dx, 

(A1.12) 

(A1.13) 

In the integrand of (A1.12) we have omitted the terms 

as they are always sl. As, further, a simple calculation shows, the maximum value 
of 4 + ( 4 4 ' / 3 ) - ~  is =-i7/12, Then performing the remaining integral in (A1.12) 
we deduce 

6 C  e - d 4 8  -1/12 1 (4n+1)/1ZI 

(2n)l/3 e1/4 ewn/12  [nl/4Fln(n)- 1]-n1/3[ln(n)-l] n 

(A1.15) 

The next integral on the contour in equation (A1.2) is easily seen to fulfil with 

1 (n >>1,L >>1, L = n  + a ) .  

1 z = n +s+iy,  L = n +a, 

1131 s 4r(n + 1) I ,L/ r (a+iy) \ \ r (2n  +1+1+2iy)1*'3/e-"Y+iewYI dy* 

As n >> 1 we can utilise (A1.6) for the Gamma functions in (A1.16). Thus 

1 
(A1.16) 

In the integrand of (A1.17) we have discarded the term 

{[y/(n + $)12 + 1)-(2n+1)/3 s 1. (Al.  18) 
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Now, the integral, I ,  on the right-hand side of (A1.17) satisfies 

(Al .  19) 

( A 1 . 1 9 ~ )  

M '  exists, as the application of (A1.6) to lI'($+iy)l for y >> 1 shows. (The relevant 
integrand is finite for y 2 0 and tends to 0 as y + 03.) Hence, 

1 The fourth and final integral, 14, where z = x +iL and x varies from n + a  to -a, 
is easily shown to satisfy ( A l . l l )  and, therefore, also (A1.15). On combining further 
(Al.lO), (A1.15) and (A1.20), we observe that IS,, in (A1.2) from a certain large 
but finite n, say n l ,  onwards cannot exceed a finite bound. As a consequence we can 
find a finite N > n such that 

lS,I<n, n 3 N .  (A1.21) 

This N is essentially determined from 1111 < N since 12, I3 and I4 fall much more 
rapidly. If we consider (A1.21) in place of (2.26), then we will obtain that cannot 
behave stronger than e' (1 + z )  +polynomial of degree N in z. This clearly does not 
affect the existence of the integral in (2.14). A characteristic feature, however, of 
(A1.6), on which actually (A1.21) is based, is that it is valid also for moderately large 
X or Y. In fact the accuracy of (A1.6) is surprising even for small (Jeffreys an# 
Jeffreys 1956) IZ(, i.e. /ZI = 1 , 2 , ,  . , . Thus (A1.21) most probably holds for small n 
too. 

We have carried out a numerical investigation of the sum S ,  and have followed 
its behaviour up to n = 500. The structure of S ,  indicates that even for small n, for 
instance n = 20, a large number of manipulations are performed in which huge numbers 
alternating in sign are added. This causes round-off errors and despite the fact that 
the calculation was performed to 32 decimal places (quadruple-precision mode), the 
capacity of the computer to manipulate these numbers is rapidly exceeded after 
n = 440. For n = 450 we have terms of the order lo2' which alternate in sign. Double 
precision can get us only to about n = 135. 

In table 1 we present some of the results of the numerical calculation. It is 
interesting to note that (cf figure l ( a ) ,  ( b ) ) :  

(i) S,  is negative for n 3 2. 
(ii) /S,I< 1 for n 2 1. Also S ,  has an absolute minimum for n = 5 ,  a relative 

maximum at n = 22 and a relative minimum for n = 34. For n > 34, IS,, decreases 
monotonically and tends to 0 as n -+ 00, albeit slowly. This is obviously predicted by 
(Al.lO), (A1.15) and (A1.20). It is perhaps worth pointing out that the slow rate at 
which IS,I+O for n -,CC is implied by (A1.10). (Note the factor n1/4 in the 
denominator.) 
Taking account of (i)-(ii) we can write down (2.26). 

Finally, we wish to remark that the presence of the fractional exponent $ is what 
actually ensures the validity of (A1.15) and (A1.20). Had we $ instead, it would have 
been no longer possible to prove that 1121, 1Z31 and 114/ are bounded by relations similar 
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Table 1. S, as a function of n. 

n S" n S" n S, n S, 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1.000 000 
0.370 039 

-0.019 546 
-0.243 447 
-0.355 942 
-0.395 981 
-0.391 090 
-0.360 357 
-0.316 701 
-0.268 587 
-0.221 309 
-0.177 942 
-0.140 051 
-0.108 195 
-0.082 299 
-0.061 909 
-0.046 375 
-0.034 965 
-0.026 951 
-0.021 647 
-0.018 442 
-0.016 809 
-0.016 306 
-0.016 575 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

-0.017 330 
-0.018 352 
-0.019 479 
-0.020 593 
-0.021 615 
-0.022 496 
-0.023 208 
-0.023 741 
-0.024 098 
-0.024 289 
-0.024 331 
-0.024 242 
-0.024 043 
-0.023 753 
-0.023 393 
-0.022 978 
-0.022 525 
-0.022 048 
-0.021 557 
-0.021 063 
-0.020 573 
-0.020 092 
-0.019 626 
-0.019 177 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

-0.018 748 
-0.018 339 
-0.017 951 
-0.017 585 
-0.017 239 
-0.016 912 
-0.016 605 
-0.016 314 
-0.016 040 
-0.015 780 
-0.015 534 
-0.015 300 
-0.015 077 
-0.014 865 
-0.014 661 
-0.014 466 
-0.014 277 
-0.014 096 
-0.013 921 
-0.013 751 
-0.013 586 
-0.013 426 
-0.013 270 
-0.013 118 

80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 

-0.011 897 
-0.010 790 
-0.009 886 
-0.009 138 
-0.008 508 
-0.007 969 
-0.007 501 
-0.007 092 
-0.006 730 
-0.006 408 
-0.006 120 
-0.005 859 
-0.005 623 
-0.005 407 
-0.005 210 
-0.005 028 
-0.004 861 
-0.004 706 
-0.004 561 
-0.004 427 
-0.004 301 
-0.004 184 
-0.004 074 
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Figure 1. S, as a function of n. 

to (A1.15) and (A1.20), although the condition equivalent to (A1.lO) would still be 
valid. Indeed, we have replaced 3 by 4 in S,  and observed that the computer program 
yields, even for small n, large values in sharp contrast to the results pertaining to f. 
It should also be noted that (A1.21) cannot be obtained by manipulating known sums 
and comparing them with S,  by application of the Abel inequality, which is central 
to the theory of series, simply because the terms in S ,  depend on n themselves aild 
all known procedures become inapplicable. 
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Appendix 2 .  

The function g ( x )  in (2.14) can be written as 
r m  

(A2.1) 

On denoting the maximum value of If(s)l for s E [0, R I  by MR and observing that, 
since f(s) is given by a convergent series in the range [0, CO), MR < CO, we obtain for 
the first integral, J1, in (A2.1) 

We choose now a sufficiently large but finite R and denote by fas(s) the asymptotic 
approximation of f (s) .  Then we have for the remainder, r ( s ) ,  the exact relation 
r ( s )  = f ( s )  -fas(s), s >>1. Owing to / r ( s ) /  < E ,  E > 0, for s > R >> 1, and to (2.30), we 
deduce for (A2.1) by using (A2.2) 

m a2 

I R x e Y  

MR 
Ig ( x  )I .s 7 (1 - e-Rx) + e-” (1 + Ls + L2s 2 ,  ds + - - ds + E e-” ds. (A2.3) 

On recalling the definition of the exponential integral, E l ( x ) ,  we get 

E , ( x )  = 5 ds 3 JRm ds 

and, therefore, (A2.3) yields 

(A2.4) 

Letting x + CO, we observe from (A2.5) that g ( x )  + 0 as x + CO and that g ( x )  for x >> 1 
falls at least as rapidly as l/x, due to the presence of the factor e-Rx and the asymptotic 
behaviour of E l ( x )  

E l ( x )  = e - * / x ,  x >>1. (A2.6) 

The proof of g ( x )  + 0 for x + CO can be done simply by looking at the integrand in 
(2.14). The above procedure, however, gives also the rate at which g ( x )  + 0 as x + CO. 
Moreover, it reveals that (3.1), although giving the correct result g ( x ) + O  for x +CO,  

cannot be considered as the asymptotic series for g ( x ) ,  not least because of the absence 
of the (in the PoincarC sense) necessary remainder. 

By virtue now of (2.5) the truth of (3.3) becomes obvious. 
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